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Challenges

Durability 
Cost
Electrode Performance
Water Transport Within the Stack
Thermal, Air and Water Management
Start-up Time and Energy

Cost and durability present two of the more 
significant technical barriers to the achievement of 

clean, reliable, cost-effective systems.



Key Targets

Integrated Transportation Fuel Cell Power System 
(80 kWe) Operating on Direct Hydrogen

• $45/kW by 2010

• $30/kW by 2015

• 5,000 hours durability by 2010 (80OC)



Other Key Targets
Distributed Energy (PEMFC)
• $750/kW by 2011

• 40,000 hours durability by 2011

• 40% electrical efficiency

Auxiliary Power Units (SOFC)
• Specific power of 100 W/kg by 2010

• Power density of 100 W/L by 2010

Consumer Electronics (DMFC)
• Energy density of 1,000 W-h/L by   
2010



Transportation Fuel Cell System 
Targets & Progress

Characteristic

Precious metal loading
g/kW 

(rated) <2.0 1.1 0.2

Lifetime (durability w/ 
cycling) hr N/A ~1,000 5,000

Start-up and  shut down 
energy at:                                   
-20oC ambient temp MJ na 7.5 5

+20oC ambient temp MJ na na 1

Start-up time to 50% of rated 
power at:                                    
-20oC ambient temp sec 120 20 30

2003 
Status

2005 
Status

$/kW 200 110

525

<10

440W/L

60sec 

2015 
Target

Cost 30

Power density 650

+20oC ambient temp 5



Targets & Progress: Reduced Cost and 
Increased Durability

Fuel Cell System (80 kW) Costs
 Status vs. Targets
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2005 Stack Durability Status (20 Cell Stack)

4,000 hours of cyclic durability achieved 
with approximately 10% performance 
loss (at 600 mA/cm2)

Reproduced with permission of UTC Fuel Cells



Strategy
Primary focus is on fuel cells for transportation 
applications
R&D is focused on components rather than systems

Membranes Bipolar Plates

Electrodes Seals

Membrane Electrode 
Assemblies

Balance-of-plant 
Components

Gas Diffusion 
Layers Innovative Concepts

Analysis, Characterization and 
Benchmarking

Solicitation and Lab Call for $100 million over 2-4 years:
closed April 7; selections expected in the fall 



Strategy
Secondary focus is on stationary and other early 
market fuel cells to establish the manufacturing base

Portable Power
• Develop membranes to 
reduce methanol 
crossover

• Design, build, & test 
under real-world 
conditions

APUs
• Develop diesel fuel 
processor

• Develop FC that 
operates on reformate

• Design, build, & test 
under real-world 
conditions

Distributed Power
• Improve system durability
• Improve stack performance 
w/ reformate

• Improve fuel processor 
performance

• Increase system electrical 
efficiency



Fuel Cell Budget
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Results: R&D Highlights
Catalysts (Pt Alloy)

• Achieved state-of-the-art 
Pt-alloy mass activities 
(0.26A/mgPt) in durable 
whisker electrode 
structure (3M)

• Improved MEA lifetime 
under harsh FC 
conditions (3M)

• Achieved mass activity 
4x that of Pt (BNL)

• 10X increase in catalyst layer while 
maintaining mass transport (LANL)

• Metal-free carbon based catalyst with 
activity approaching other non-pt metal  
catalysts (USC)

• Reduced H2O2 generation by more than 70% 
(USC)
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Air-electrode behavior of 
equal loadings of Pt & 
non-Pt (cobalt-based) 
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Results: R&D Highlights
Characterization
• Achieved real-time imaging of water in FC components 

during transients (NIST)
• Developed microstructural characterization of PEM FC 

MEAs (ORNL)
ideal region

NIST’s New BT-2 Neutron Imaging Facility

TEM image showing 
the distribution of Pt 
catalyst (ORNL)

Water Management Freeze (sub-freeze)
• Accomplished dynamic model of freeze start showing self start 

possible when specific gravity of ice formation is >0.5 (ANL)
• Identified delamination of cathode catalyst, but only at <-40oC (LANL)

SEM micrograph 
after 10 cycles from 
-80 to 80oC, LANL
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Results: R&D Highlights

Recycling
• Developed first operating FC with 

remanufactured membrane/down-select of Pt 
separation procedures (Ion Power, Engelhard)

• Developed testing procedures determining 
catalyst separation of used MEAs from 
polymers for use in new MEAs (Ion Power)

• Developed more conventional Pt-recycling 
approach (Engelhard)

Recycled NAFION® from End-of-life Fuel Cell System has 
Performance Close to Virgin NAFION® 
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New NAFION® 

MEA# 359 @ 101 hrs on test

Single Cell Made with 1 mil thick 
Recycled / Re-Manufactured 
End-of-Life NAFION® 

Cell: 60 C
Dry Hydrogen, 1 ATM, 1.2 x 
Dry Air, 1 ATM, 2.5 x 

Ion Power, Engelhard

Membrane Durability
• Identified chemical and mechanical modes of 

degradation and demonstrated a coupling 
between the two modes (DuPont/UTC)

Lifetime Improvements Achieved through Coordinated work 
from Fundamentals to Stack, DuPont



For More Information
DOE Fuel Cell Team

Valri Lightner, Team Leader
Overall Fuel Cell Systems/ FreedomCAR 

Tech Team/IPHE
202-586-0937              

Valri.Lightner@ee.doe.gov

Jill Gruber                                
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Kathi.Epping@ee.doe.gov

Amy Manheim
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Vehicle Demo/APU’s/Compressors
202-586-1723 

John.Garbak@ee.doe.gov

David Peterson
Fuel Cells
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National Lab R&D/ 
HT Membrane/IEA ExCo
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